
Space Travel Under Constant 1g Acceleration 
 
The basic principle behind every high-thrust interplanetary space probe is to 
accelerate briefly, and then coast, following an elliptical, parabolic, or mildly 
hyperbolic solar trajectory to your destination, using gravity assists whenever 
possible.  But this is very slow. 
 
Imagine, for a moment, that we have a spacecraft that is capable of a constant 1g 
(“one gee” = 9.8 m/s2) acceleration: your spacecraft would accelerate for the first 
half of the journey, and then decelerate for the second half of the journey to allow a 
visit at your destination.  A constant 1g acceleration would allow human occupants 
the comfort of an earthlike gravitational environment where they would not be 
weightless except during very brief periods during the mission.  Granted such a 
rocket ship would require a tremendous source of power, far beyond what today’s 
chemical rockets can provide, but the day will come, perhaps even in our lifetimes, 
when probes and people will routinely travel the solar system in just a few days.   
Journeys to the stars, however, will be much more difficult. 
 
The key to tomorrow’s space propulsion systems will be hydrogen fusion and, 
later, matter-antimatter annihilation.  The fusion of hydrogen into helium provides 
energy E = 0.008 mc2.  This may not seem like much energy, but when today’s 
technological hurdles are overcome, fusion reactors will produce far more energy 
in a manner far safer than today’s fission reactors.  Matter-antimatter annihilation, 
on the other hand, completely converts mass into energy in the amount given by 
Einstein’s famous equation E = mc2.  You cannot get any more energy than this out 
of any conceivable power, or propulsion, system.  Of course, no system is perfect, 
so there will be some losses that will reduce the efficiency of even the best fusion 
or matter-antimatter propulsion systems by a few percent. 
 
How long would it take to travel from Earth to the Moon or any of the planets in 
our solar system under constant 1g acceleration for the first half of the journey and 
constant 1g deceleration during the second half of the journey?  Using the 
equations below, and the table that follows, you can calculate this easily. 
 
Keep in mind that under a constant 1g acceleration, your velocity quickly becomes 
so great that you can assume a straight-line trajectory from point a to point b 
anywhere in our solar system. 
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where  T⊕ = travel time, Earth’s frame of reference 
   and  k = c2 / a 

    and  c = the speed of light = 2.99792458 x 108 m/s exactly  
    and  a = the constant acceleration / deceleration 
    and  d = the distance to your destination 
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  where  TSC = travel time, spacecraft’s frame of reference 

   and  cosh-1 = the inverse hyperbolic cosine function 
 

Maximum velocity is reached at the halfway point (when you stop accelerating and 
begin decelerating) and is given by 
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The energy per unit mass needed for the trip (one way) is then given by 
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  where Ekg is the energy needed per kg of payload (J/kg) to make the journey 

Idea: use “dimensional analysis” to make sure the 
calculations on the right side of the equals sign give 
you the correct units (time in seconds) to match the 
left side of the equation. 

Again, use “dimensional analysis” to make sure your 
units come out right. 



How much fuel will you need for the journey? 
 

hydrogen fusion into helium gives:  Efusion = 0.008 mfuelc2 
  

matter-antimatter annihilation gives: Eanti = mfuelc2 
 

This assumes 100% of the fuel goes into propelling the spacecraft, but of course 
there will be energy losses which will require a greater amount of fuel than this. 
 

     David Oesper 
revised 5/5/12 

 
Mean distance from Earth to the Moon: 384,399 km 
 
Mean distance of the planets from the Sun (in AU) 
 

Mercury 0.39 
 Venus  0.72 

Earth  1.00 
Mars  1.52 
Jupiter 5.20 
Saturn 9.58 
Uranus 19.23 
Neptune 30.10 

 
Distance to the nearest star outside our solar system 
 
 Proxima Centauri 4.243 ly 
 
Distance to the exoplanet with the highest Earth Similarity Index (ESI) 
 
 Gliese 667C c  22 ly   
 
 
1 AU = 1.495978707 x 1011 m 
 
1 ly = 9.4607304725808 x 1015 m 
 


